Kramer’s escape rate across a barrier

Consider a collection of independent Brownian particles in a potential U(z) which has the shape
shown in the figure below. Let us assume that the well is very deep and initially the particles are
within the well. Physically we expect that the particles will reach a close-to-equilibrium state but
will leak out slowly across the barrier. What is the rate at which this escape takes place ? This is
the Kramer’s escape rate problem.

Let us first write the Langevin equation for the particles. We will work in the overdamped limit
where it is ok to drop the inertial term mwv. Thus we have the equation:
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The corresponding Fokker-Planck equation for the probability density P(z,t) is given by
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We can rewrite the current in the following form:
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If the system was completely in equilibrium there would be no currents J = 0 and we would
therefore get

_U=)
P(z)=¢ *T P, (5)

where W, can be determined from normalization. This is the expected equilibrium distribution.
However with the given form of U(z) the system cannot be exactly in equilibrium ( WHY!!!). Let
us thus assume that the particles are approximately in equilibrium at the bottom of the well and



there is a small current J across the barrier. With 9P/0t ~ 0, the current J will be independent
of z and from Eq. 4 we get
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Integrating this between the points a¢ and ¢ gives
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But P(x) is very small at c. Hence we get
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The escape rate r can now be obtained by noting that this gives the conditional probability of
escape per unit time, given that the particle is initially inside the well near x = a. Thus if we define
p as the probability of the particle being inside the well then J = pr. To evaluate p we first note
that if the barrier is high then we have (approximately) the equilibrium relation:
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The probability of finding a particle in the well is thus
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where A is of the order of the size of the well. Again the integrand is peaked about the point x = a

and expanding about it gives
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In Eq. 8 the integrand in the denominator is peaked about the point x = b. Expanding about this

)!/? (11)

point then gives
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Using this and Eq. 11 we finally get, from r = J/p, the Kramer’s escape rate formula:
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where E, = U(b) — U(a) is the barrier height. Thus the escape rate falls exponentially with the
barrier height. It also depends on how flat the potential is at the points © = @ and z = b. As
expected the escape rate increases with increasing temperature (D/kgT = 1/v) depends weakly
on temperature). Also note that the formula can only be applied for E, >> kgT because the
assumptions that have been made while deriving it hold only in this regime.
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